3 from ost
import LogWarning, LogInfo
13 """ :class:`LigandScorer` implementing lDDT-PLI.
15 lDDT-PLI is an lDDT score considering contacts between ligand and
16 receptor. Where receptor consists of protein and nucleic acid chains that
17 pass the criteria for :class:`chain mapping <ost.mol.alg.chain_mapping>`.
18 This means ignoring other ligands, waters, short polymers as well as any
19 incorrectly connected chains that may be in proximity.
21 :class:`LDDTPLIScorer` computes a score for a specific pair of target/model
22 ligands. Given a target/model ligand pair, all possible mappings of
23 model chains onto their chemically equivalent target chains are enumerated.
24 For each of these enumerations, all possible symmetries, i.e. atom-atom
25 assignments of the ligand as given by :class:`LigandScorer`, are evaluated
26 and an lDDT-PLI score is computed. The best possible lDDT-PLI score is
29 The lDDT-PLI score is a variant of lDDT with a custom inclusion radius
30 (`lddt_pli_radius`), no stereochemistry checks, and which penalizes
31 contacts added in the model within `lddt_pli_radius` by default
32 (can be changed with the `add_mdl_contacts` flag) but only if the involved
33 atoms can be mapped to the target. This is a requirement to
34 1) extract the respective reference distance from the target
35 2) avoid usage of contacts for which we have no experimental evidence.
36 One special case are contacts from chains that are not mapped to the target
37 binding site. It is very well possible that we have experimental evidence
38 for this chain though its just too far away from the target binding site.
39 We therefore try to map these contacts to the chain in the target with
40 equivalent sequence that is closest to the target binding site. If the
41 respective atoms can be mapped there, the contact is considered not
42 fulfilled and added as penalty.
44 Populates :attr:`LigandScorer.aux_data` with following :class:`dict` keys:
46 * lddt_pli: The LDDT-PLI score
47 * lddt_pli_n_contacts: Number of contacts considered in lDDT computation
48 * target_ligand: The actual target ligand for which the score was computed
49 * model_ligand: The actual model ligand for which the score was computed
50 * bs_ref_res: :class:`set` of residues with potentially non-zero
51 contribution to score. That is every residue with at least one
52 atom within *lddt_pli_radius* + max(*lddt_pli_thresholds*) of
54 * bs_mdl_res: Same for model
56 :param model: Passed to parent constructor - see :class:`LigandScorer`.
57 :type model: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
58 :param target: Passed to parent constructor - see :class:`LigandScorer`.
59 :type target: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
60 :param model_ligands: Passed to parent constructor - see
61 :class:`LigandScorer`.
62 :type model_ligands: :class:`list`
63 :param target_ligands: Passed to parent constructor - see
64 :class:`LigandScorer`.
65 :type target_ligands: :class:`list`
66 :param resnum_alignments: Passed to parent constructor - see
67 :class:`LigandScorer`.
68 :type resnum_alignments: :class:`bool`
69 :param rename_ligand_chain: Passed to parent constructor - see
70 :class:`LigandScorer`.
71 :type rename_ligand_chain: :class:`bool`
72 :param substructure_match: Passed to parent constructor - see
73 :class:`LigandScorer`.
74 :type substructure_match: :class:`bool`
75 :param coverage_delta: Passed to parent constructor - see
76 :class:`LigandScorer`.
77 :type coverage_delta: :class:`float`
78 :param max_symmetries: Passed to parent constructor - see
79 :class:`LigandScorer`.
80 :type max_symmetries: :class:`int`
81 :param lddt_pli_radius: lDDT inclusion radius for lDDT-PLI.
82 :type lddt_pli_radius: :class:`float`
83 :param add_mdl_contacts: Whether to penalize added model contacts.
84 :type add_mdl_contacts: :class:`bool`
85 :param lddt_pli_thresholds: Distance difference thresholds for lDDT.
86 :type lddt_pli_thresholds: :class:`list` of :class:`float`
87 :param lddt_pli_binding_site_radius: Pro param - dont use. Providing a value
88 Restores behaviour from previous
89 implementation that first extracted a
90 binding site with strict distance
91 threshold and computed lDDT-PLI only on
92 those target residues whereas the
93 current implementation includes every
94 atom within *lddt_pli_radius*.
95 :type lddt_pli_binding_site_radius: :class:`float`
98 def __init__(self, model, target, model_ligands, target_ligands,
99 resnum_alignments=False, rename_ligand_chain=False,
100 substructure_match=False, coverage_delta=0.2,
101 max_symmetries=1e4, lddt_pli_radius=6.0,
102 add_mdl_contacts=True,
103 lddt_pli_thresholds = [0.5, 1.0, 2.0, 4.0],
104 lddt_pli_binding_site_radius=None):
106 super().
__init__(model, target, model_ligands, target_ligands,
107 resnum_alignments = resnum_alignments,
108 rename_ligand_chain = rename_ligand_chain,
109 substructure_match = substructure_match,
110 coverage_delta = coverage_delta,
111 max_symmetries = max_symmetries)
129 "There were no lDDT contacts between the "
130 "binding site and the ligand, and lDDT-PLI "
133 "Unknown error occured in LDDTPLIScorer")
135 def _compute(self, symmetries, target_ligand, model_ligand):
136 """ Implements interface from parent
139 LogInfo(
"Computing lDDT-PLI with added model contacts")
144 LogInfo(
"Computing lDDT-PLI without added model contacts")
150 score = result[
"lddt_pli"]
152 if score
is None or np.isnan(score):
153 if result[
"lddt_pli_n_contacts"] == 0:
161 target_ligand_state = 0
162 model_ligand_state = 0
164 return (score, pair_state, target_ligand_state, model_ligand_state,
167 def _score_dir(self):
168 """ Implements interface from parent
172 def _compute_lddt_pli_add_mdl_contacts(self, symmetries, target_ligand,
179 trg_residues, trg_bs, trg_chains, trg_ligand_chain, \
180 trg_ligand_res, scorer, chem_groups = \
183 trg_bs_center = trg_bs.geometric_center
189 ref_indices = [a.copy()
for a
in scorer.ref_indices_ic]
190 ref_distances = [a.copy()
for a
in scorer.ref_distances_ic]
194 ligand_start_idx = scorer.chain_start_indices[-1]
195 for at_idx
in range(ligand_start_idx):
196 mask = ref_indices[at_idx] >= ligand_start_idx
197 ref_indices[at_idx] = ref_indices[at_idx][mask]
198 ref_distances[at_idx] = ref_distances[at_idx][mask]
200 mdl_residues, mdl_bs, mdl_chains, mdl_ligand_chain, mdl_ligand_res, \
219 chain_mappings = list(chain_mapping._ChainMappings(chem_groups,
224 ligand_atom_mappings = [set()
for a
in mdl_ligand_res.atoms]
225 for (trg_sym, mdl_sym)
in symmetries:
226 for trg_i, mdl_i
in zip(trg_sym, mdl_sym):
227 ligand_atom_mappings[mdl_i].add(trg_i)
229 mdl_ligand_pos = np.zeros((mdl_ligand_res.GetAtomCount(), 3))
230 for a_idx, a
in enumerate(mdl_ligand_res.atoms):
232 mdl_ligand_pos[a_idx, 0] = p[0]
233 mdl_ligand_pos[a_idx, 1] = p[1]
234 mdl_ligand_pos[a_idx, 2] = p[2]
236 trg_ligand_pos = np.zeros((trg_ligand_res.GetAtomCount(), 3))
237 for a_idx, a
in enumerate(trg_ligand_res.atoms):
239 trg_ligand_pos[a_idx, 0] = p[0]
240 trg_ligand_pos[a_idx, 1] = p[1]
241 trg_ligand_pos[a_idx, 2] = p[2]
243 mdl_lig_hashes = [a.hash_code
for a
in mdl_ligand_res.atoms]
245 symmetric_atoms = np.asarray(sorted(list(scorer.symmetric_atoms)),
267 scoring_cache = list()
268 penalty_cache = list()
270 for mapping
in chain_mappings:
273 flat_mapping = dict()
274 for trg_chem_group, mdl_chem_group
in zip(chem_groups, mapping):
275 for a,b
in zip(trg_chem_group, mdl_chem_group):
276 if a
is not None and b
is not None:
281 bs_atom_mapping = dict()
282 for mdl_cname, ref_cname
in flat_mapping.items():
283 aln = cut_ref_mdl_alns[(ref_cname, mdl_cname)]
284 ref_ch = trg_bs.Select(f
"cname={mol.QueryQuoteName(ref_cname)}")
285 mdl_ch = mdl_bs.Select(f
"cname={mol.QueryQuoteName(mdl_cname)}")
286 aln.AttachView(0, ref_ch)
287 aln.AttachView(1, mdl_ch)
289 ref_r = col.GetResidue(0)
290 mdl_r = col.GetResidue(1)
291 if ref_r.IsValid()
and mdl_r.IsValid():
292 for mdl_a
in mdl_r.atoms:
293 ref_a = ref_r.FindAtom(mdl_a.GetName())
295 ref_h = ref_a.handle.hash_code
296 if ref_h
in scorer.atom_indices:
297 mdl_h = mdl_a.handle.hash_code
298 bs_atom_mapping[mdl_h] = \
299 scorer.atom_indices[ref_h]
304 for mdl_a_idx, mdl_a
in enumerate(mdl_ligand_res.atoms):
306 trg_bs_indices = list()
307 close_a = mdl_bs.FindWithin(mdl_a.GetPos(),
310 mdl_a_hash_code = a.hash_code
311 if mdl_a_hash_code
in bs_atom_mapping:
312 trg_bs_indices.append(bs_atom_mapping[mdl_a_hash_code])
313 elif mdl_a_hash_code
not in mdl_lig_hashes:
314 if a.GetChain().GetName()
in flat_mapping:
316 at_key = (a.GetResidue().GetNumber(), a.name)
317 cname = a.GetChain().name
318 cname_key = (flat_mapping[cname], cname)
327 n_penalties.append(n_penalty)
329 trg_bs_indices = np.asarray(sorted(trg_bs_indices))
331 for trg_a_idx
in ligand_atom_mappings[mdl_a_idx]:
335 mask = np.isin(trg_bs_indices,
336 ref_indices[ligand_start_idx + trg_a_idx],
337 assume_unique=
True, invert=
True)
338 added_indices = np.asarray([], dtype=np.int64)
339 added_distances = np.asarray([], dtype=np.float64)
342 added_indices = trg_bs_indices[mask]
343 tmp = scorer.positions.take(added_indices, axis=0)
344 np.subtract(tmp, trg_ligand_pos[trg_a_idx][
None, :],
346 np.square(tmp, out=tmp)
347 tmp = tmp.sum(axis=1)
348 np.sqrt(tmp, out=tmp)
349 added_distances = tmp
352 sym_mask = np.isin(added_indices, symmetric_atoms,
355 cache[(mdl_a_idx, trg_a_idx)] = (added_indices,
357 added_indices[sym_mask],
358 added_distances[sym_mask])
360 scoring_cache.append(cache)
361 penalty_cache.append(n_penalties)
369 non_mapped_cache = dict()
376 best_result = {
"lddt_pli":
None,
377 "lddt_pli_n_contacts": 0}
380 ligand_aln = seq.CreateAlignment()
381 trg_s = seq.CreateSequence(trg_ligand_chain.name,
382 trg_ligand_res.GetOneLetterCode())
383 mdl_s = seq.CreateSequence(mdl_ligand_chain.name,
384 mdl_ligand_res.GetOneLetterCode())
385 ligand_aln.AddSequence(trg_s)
386 ligand_aln.AddSequence(mdl_s)
387 ligand_at_indices = list(range(ligand_start_idx, scorer.n_atoms))
389 sym_idx_collector = [
None] * scorer.n_atoms
390 sym_dist_collector = [
None] * scorer.n_atoms
392 for mapping, s_cache, p_cache
in zip(chain_mappings, scoring_cache,
395 lddt_chain_mapping = dict()
397 for ref_chem_group, mdl_chem_group
in zip(chem_groups, mapping):
398 for ref_ch, mdl_ch
in zip(ref_chem_group, mdl_chem_group):
400 if mdl_ch
is not None:
401 lddt_chain_mapping[mdl_ch] = ref_ch
402 lddt_alns[mdl_ch] = cut_ref_mdl_alns[(ref_ch, mdl_ch)]
405 lddt_chain_mapping[mdl_ligand_chain.name] = trg_ligand_chain.name
406 lddt_alns[mdl_ligand_chain.name] = ligand_aln
410 pos, _, _, _, _, _, lddt_symmetries = \
411 scorer._ProcessModel(mdl_bs, lddt_chain_mapping,
412 residue_mapping = lddt_alns,
414 check_resnames =
False)
424 unmapped_chains = list()
425 already_mapped = set()
426 for mdl_ch
in mdl_chains:
427 if mdl_ch
not in lddt_chain_mapping:
434 if chem_grp_idx
is None:
435 raise RuntimeError(
"This should never happen... "
439 for trg_ch
in self.
_chain_mapper_chain_mapper.chem_groups[chem_grp_idx]:
440 if trg_ch
not in lddt_chain_mapping.values():
441 if trg_ch
not in already_mapped:
442 ch = self.
_chain_mapper_chain_mapper.target.FindChain(trg_ch)
443 c = ch.geometric_center
445 if closest_dist
is None or d < closest_dist:
448 if closest_ch
is not None:
449 unmapped_chains.append((closest_ch, mdl_ch))
450 already_mapped.add(closest_ch)
452 for (trg_sym, mdl_sym)
in symmetries:
455 for mdl_i, trg_i
in zip(mdl_sym, trg_sym):
456 pos[ligand_start_idx + trg_i, :] = mdl_ligand_pos[mdl_i, :]
459 funky_ref_indices = [np.copy(a)
for a
in ref_indices]
460 funky_ref_distances = [np.copy(a)
for a
in ref_distances]
467 for idx
in symmetric_atoms:
468 sym_idx_collector[idx] = list()
469 sym_dist_collector[idx] = list()
473 for mdl_i, trg_i
in zip(mdl_sym, trg_sym):
474 added_penalty += p_cache[mdl_i]
475 cache = s_cache[mdl_i, trg_i]
476 full_trg_i = ligand_start_idx + trg_i
477 funky_ref_indices[full_trg_i] = \
478 np.append(funky_ref_indices[full_trg_i], cache[0])
479 funky_ref_distances[full_trg_i] = \
480 np.append(funky_ref_distances[full_trg_i], cache[1])
481 for idx, d
in zip(cache[2], cache[3]):
482 sym_idx_collector[idx].append(full_trg_i)
483 sym_dist_collector[idx].append(d)
485 for idx
in symmetric_atoms:
486 funky_ref_indices[idx] = \
487 np.append(funky_ref_indices[idx],
488 np.asarray(sym_idx_collector[idx],
490 funky_ref_distances[idx] = \
491 np.append(funky_ref_distances[idx],
492 np.asarray(sym_dist_collector[idx],
504 N = sum([len(funky_ref_indices[i])
for i
in ligand_at_indices])
508 if len(unmapped_chains) > 0:
515 conserved = np.sum(scorer._EvalAtoms(pos, ligand_at_indices,
518 funky_ref_distances),
522 score = np.mean(conserved/N)
524 if score
is not None and score > best_score:
526 best_result = {
"lddt_pli": score,
527 "lddt_pli_n_contacts": N}
530 best_result[
"target_ligand"] = target_ligand
531 best_result[
"model_ligand"] = model_ligand
532 best_result[
"bs_ref_res"] = trg_residues
533 best_result[
"bs_mdl_res"] = mdl_residues
538 def _compute_lddt_pli_classic(self, symmetries, target_ligand,
549 trg_residues, trg_bs, trg_chains, trg_ligand_chain, \
550 trg_ligand_res, scorer, chem_groups = \
557 ref_indices = [a.copy()
for a
in scorer.ref_indices_ic]
558 ref_distances = [a.copy()
for a
in scorer.ref_distances_ic]
562 ligand_start_idx = scorer.chain_start_indices[-1]
563 ligand_at_indices = list(range(ligand_start_idx, scorer.n_atoms))
564 n_exp = sum([len(ref_indices[i])
for i
in ligand_at_indices])
566 mdl_residues, mdl_bs, mdl_chains, mdl_ligand_chain, mdl_ligand_res, \
571 return {
"lddt_pli":
None,
572 "lddt_pli_n_contacts": 0,
573 "target_ligand": target_ligand,
574 "model_ligand": model_ligand,
575 "bs_ref_res": trg_residues,
576 "bs_mdl_res": mdl_residues}
580 for at_idx
in range(ligand_start_idx):
581 mask = ref_indices[at_idx] >= ligand_start_idx
582 ref_indices[at_idx] = ref_indices[at_idx][mask]
583 ref_distances[at_idx] = ref_distances[at_idx][mask]
603 l_aln = seq.CreateAlignment()
604 l_aln.AddSequence(seq.CreateSequence(trg_ligand_chain.name,
605 trg_ligand_res.GetOneLetterCode()))
606 l_aln.AddSequence(seq.CreateSequence(mdl_ligand_chain.name,
607 mdl_ligand_res.GetOneLetterCode()))
609 mdl_ligand_pos = np.zeros((model_ligand.GetAtomCount(), 3))
610 for a_idx, a
in enumerate(model_ligand.atoms):
612 mdl_ligand_pos[a_idx, 0] = p[0]
613 mdl_ligand_pos[a_idx, 1] = p[1]
614 mdl_ligand_pos[a_idx, 2] = p[2]
616 for mapping
in chain_mapping._ChainMappings(chem_groups, chem_mapping):
618 lddt_chain_mapping = dict()
620 for ref_chem_group, mdl_chem_group
in zip(chem_groups, mapping):
621 for ref_ch, mdl_ch
in zip(ref_chem_group, mdl_chem_group):
623 if mdl_ch
is not None:
624 lddt_chain_mapping[mdl_ch] = ref_ch
625 lddt_alns[mdl_ch] = cut_ref_mdl_alns[(ref_ch, mdl_ch)]
628 lddt_chain_mapping[mdl_ligand_chain.name] = trg_ligand_chain.name
629 lddt_alns[mdl_ligand_chain.name] = l_aln
633 pos, _, _, _, _, _, lddt_symmetries = \
634 scorer._ProcessModel(mdl_bs, lddt_chain_mapping,
635 residue_mapping = lddt_alns,
637 check_resnames =
False)
639 for (trg_sym, mdl_sym)
in symmetries:
640 for mdl_i, trg_i
in zip(mdl_sym, trg_sym):
641 pos[ligand_start_idx + trg_i, :] = mdl_ligand_pos[mdl_i, :]
651 conserved = np.sum(scorer._EvalAtoms(pos, ligand_at_indices,
654 ref_distances), axis=0)
655 score = np.mean(conserved/n_exp)
657 if score > best_score:
661 best_result = {
"lddt_pli": best_score,
662 "lddt_pli_n_contacts": n_exp,
663 "target_ligand": target_ligand,
664 "model_ligand": model_ligand,
665 "bs_ref_res": trg_residues,
666 "bs_mdl_res": mdl_residues}
670 def _lddt_pli_unmapped_chain_penalty(self, unmapped_chains,
677 for ch_tuple
in unmapped_chains:
678 if ch_tuple
not in non_mapped_cache:
684 mdl_cname = ch_tuple[1]
685 query =
"cname=" + mol.QueryQuoteName(mdl_cname)
686 mdl_bs_ch = mdl_bs.Select(query)
687 for a
in mdl_ligand_res.atoms:
691 for close_a
in close_atoms:
692 at_key = (close_a.GetResidue().GetNumber(),
696 counts[a.hash_code] = N
699 non_mapped_cache[ch_tuple] = counts
703 counts = non_mapped_cache[ch_tuple]
704 lig_hash_codes = [a.hash_code
for a
in mdl_ligand_res.atoms]
706 n_exp += counts[lig_hash_codes[i]]
711 def _lddt_pli_get_mdl_data(self, model_ligand):
717 for at
in model_ligand.atoms:
718 close_atoms = mdl.FindWithin(at.GetPos(), self.
lddt_pli_radiuslddt_pli_radius)
719 for close_at
in close_atoms:
720 mdl_residues.add(close_at.GetResidue())
723 for r
in mdl.residues:
724 r.SetIntProp(
"bs", 0)
725 for at
in model_ligand.atoms:
726 close_atoms = mdl.FindWithin(at.GetPos(), max_r)
727 for close_at
in close_atoms:
728 close_at.GetResidue().SetIntProp(
"bs", 1)
730 mdl_bs = mol.CreateEntityFromView(mdl.Select(
"grbs:0=1"),
True)
731 mdl_chains = set([ch.name
for ch
in mdl_bs.chains])
733 mdl_editor = mdl_bs.EditXCS(mol.BUFFERED_EDIT)
734 mdl_ligand_chain =
None
735 for cname
in [
"hugo_the_cat_terminator",
"ida_the_cheese_monster"]:
738 mdl_ligand_chain = mdl_editor.InsertChain(cname)
742 if mdl_ligand_chain
is None:
743 raise RuntimeError(
"Fuck this, I'm out...")
744 mdl_ligand_res = mdl_editor.AppendResidue(mdl_ligand_chain,
747 mdl_editor.RenameResidue(mdl_ligand_res,
"LIG")
748 mdl_editor.SetResidueNumber(mdl_ligand_res,
mol.ResNum(1))
750 chem_mapping = list()
752 chem_mapping.append([x
for x
in m
if x
in mdl_chains])
764 def _lddt_pli_get_trg_data(self, target_ligand, max_r = None):
773 for at
in target_ligand.atoms:
774 close_atoms = trg.FindWithin(at.GetPos(), max_r)
775 for close_at
in close_atoms:
776 trg_residues.add(close_at.GetResidue())
778 for r
in trg.residues:
779 r.SetIntProp(
"bs", 0)
781 for r
in trg_residues:
782 r.SetIntProp(
"bs", 1)
784 trg_bs = mol.CreateEntityFromView(trg.Select(
"grbs:0=1"),
True)
785 trg_chains = set([ch.name
for ch
in trg_bs.chains])
787 trg_editor = trg_bs.EditXCS(mol.BUFFERED_EDIT)
788 trg_ligand_chain =
None
789 for cname
in [
"hugo_the_cat_terminator",
"ida_the_cheese_monster"]:
792 trg_ligand_chain = trg_editor.InsertChain(cname)
796 if trg_ligand_chain
is None:
797 raise RuntimeError(
"Fuck this, I'm out...")
799 trg_ligand_res = trg_editor.AppendResidue(trg_ligand_chain,
802 trg_editor.RenameResidue(trg_ligand_res,
"LIG")
803 trg_editor.SetResidueNumber(trg_ligand_res,
mol.ResNum(1))
805 compound_name = trg_ligand_res.name
806 compound = lddt.CustomCompound.FromResidue(trg_ligand_res)
807 custom_compounds = {compound_name: compound}
810 custom_compounds = custom_compounds,
815 chem_groups.append([x
for x
in g
if x
in trg_chains])
828 def _lddt_pli_cut_ref_mdl_alns(self, chem_groups, chem_mapping, mdl_bs,
830 cut_ref_mdl_alns = dict()
831 for ref_chem_group, mdl_chem_group
in zip(chem_groups, chem_mapping):
832 for ref_ch
in ref_chem_group:
834 ref_bs_chain = ref_bs.FindChain(ref_ch)
835 query =
"cname=" + mol.QueryQuoteName(ref_ch)
836 ref_view = self.
_chain_mapper_chain_mapper.target.Select(query)
838 for mdl_ch
in mdl_chem_group:
841 aln.AttachView(0, ref_view)
843 mdl_bs_chain = mdl_bs.FindChain(mdl_ch)
844 query =
"cname=" + mol.QueryQuoteName(mdl_ch)
847 cut_mdl_seq = [
'-'] * aln.GetLength()
848 cut_ref_seq = [
'-'] * aln.GetLength()
849 for i, col
in enumerate(aln):
852 r = col.GetResidue(0)
854 bs_r = ref_bs_chain.FindResidue(r.GetNumber())
856 cut_ref_seq[i] = col[0]
859 r = col.GetResidue(1)
861 bs_r = mdl_bs_chain.FindResidue(r.GetNumber())
863 cut_mdl_seq[i] = col[1]
865 cut_ref_seq =
''.join(cut_ref_seq)
866 cut_mdl_seq =
''.join(cut_mdl_seq)
867 cut_aln = seq.CreateAlignment()
868 cut_aln.AddSequence(seq.CreateSequence(ref_ch, cut_ref_seq))
869 cut_aln.AddSequence(seq.CreateSequence(mdl_ch, cut_mdl_seq))
870 cut_ref_mdl_alns[(ref_ch, mdl_ch)] = cut_aln
871 return cut_ref_mdl_alns
874 def _mappable_atoms(self):
875 """ Stores mappable atoms given a chain mapping
877 Store for each ref_ch,mdl_ch pair all mdl atoms that can be
878 mapped. Don't store mappable atoms as hashes but rather as tuple
879 (mdl_r.GetNumber(), mdl_a.GetName()). Reason for that is that one might
880 operate on Copied EntityHandle objects without corresponding hashes.
881 Given a tuple defining c_pair: (ref_cname, mdl_cname), one
882 can check if a certain atom is mappable by evaluating:
883 if (mdl_r.GetNumber(), mdl_a.GetName()) in self._mappable_atoms(c_pair)
887 for (ref_cname, mdl_cname), aln
in self.
_ref_mdl_alns_ref_mdl_alns.items():
889 ref_query = f
"cname={mol.QueryQuoteName(ref_cname)}"
890 mdl_query = f
"cname={mol.QueryQuoteName(mdl_cname)}"
891 ref_ch = self.
_chain_mapper_chain_mapper.target.Select(ref_query)
893 aln.AttachView(0, ref_ch)
894 aln.AttachView(1, mdl_ch)
896 ref_r = col.GetResidue(0)
897 mdl_r = col.GetResidue(1)
898 if ref_r.IsValid()
and mdl_r.IsValid():
899 for mdl_a
in mdl_r.atoms:
900 if ref_r.FindAtom(mdl_a.name).IsValid():
901 c_key = (ref_cname, mdl_cname)
902 at_key = (mdl_r.GetNumber(), mdl_a.name)
908 def _chem_mapping(self):
916 def _chem_group_alns(self):
924 def _ref_mdl_alns(self):
927 chain_mapping._GetRefMdlAlns(self.
_chain_mapper_chain_mapper.chem_groups,
934 def _chain_mapping_mdl(self):
936 with ligand_scoring_base._SinkVerbosityLevel():
943 __all__ = (
'LDDTPLIScorer',)
lddt_pli_binding_site_radius
def _lddt_pli_get_trg_data(self, target_ligand, max_r=None)
def _mappable_atoms(self)
def _chem_group_alns(self)
def _compute_lddt_pli_classic(self, symmetries, target_ligand, model_ligand)
def _lddt_pli_unmapped_chain_penalty(self, unmapped_chains, non_mapped_cache, mdl_bs, mdl_ligand_res, mdl_sym)
def _lddt_pli_cut_ref_mdl_alns(self, chem_groups, chem_mapping, mdl_bs, ref_bs)
def _lddt_pli_get_mdl_data(self, model_ligand)
def _chain_mapping_mdl(self)
def _compute_lddt_pli_add_mdl_contacts(self, symmetries, target_ligand, model_ligand)
def __init__(self, model, target, model_ligands, target_ligands, resnum_alignments=False, rename_ligand_chain=False, substructure_match=False, coverage_delta=0.2, max_symmetries=1e4, lddt_pli_radius=6.0, add_mdl_contacts=True, lddt_pli_thresholds=[0.5, 1.0, 2.0, 4.0], lddt_pli_binding_site_radius=None)
Real DLLEXPORT_OST_GEOM Distance(const Line2 &l, const Vec2 &v)