3 from ost
import LogWarning, LogInfo
13 """ :class:`LigandScorer` implementing lDDT-PLI.
15 lDDT-PLI is an lDDT score considering contacts between ligand and
16 receptor. Where receptor consists of protein and nucleic acid chains that
17 pass the criteria for :class:`chain mapping <ost.mol.alg.chain_mapping>`.
18 This means ignoring other ligands, waters, short polymers as well as any
19 incorrectly connected chains that may be in proximity.
21 :class:`LDDTPLIScorer` computes a score for a specific pair of target/model
22 ligands. Given a target/model ligand pair, all possible mappings of
23 model chains onto their chemically equivalent target chains are enumerated.
24 For each of these enumerations, all possible symmetries, i.e. atom-atom
25 assignments of the ligand as given by :class:`LigandScorer`, are evaluated
26 and an lDDT-PLI score is computed. The best possible lDDT-PLI score is
29 The lDDT-PLI score is a variant of lDDT with a custom inclusion radius
30 (`lddt_pli_radius`), no stereochemistry checks, and which penalizes
31 contacts added in the model within `lddt_pli_radius` by default
32 (can be changed with the `add_mdl_contacts` flag) but only if the involved
33 atoms can be mapped to the target. This is a requirement to
34 1) extract the respective reference distance from the target
35 2) avoid usage of contacts for which we have no experimental evidence.
36 One special case are contacts from chains that are not mapped to the target
37 binding site. It is very well possible that we have experimental evidence
38 for this chain though its just too far away from the target binding site.
39 We therefore try to map these contacts to the chain in the target with
40 equivalent sequence that is closest to the target binding site. If the
41 respective atoms can be mapped there, the contact is considered not
42 fulfilled and added as penalty.
44 Populates :attr:`LigandScorer.aux_data` with following :class:`dict` keys:
46 * lddt_pli: The LDDT-PLI score
47 * lddt_pli_n_contacts: Number of contacts considered in lDDT computation
48 * target_ligand: The actual target ligand for which the score was computed
49 * model_ligand: The actual model ligand for which the score was computed
50 * bs_ref_res: :class:`set` of residues with potentially non-zero
51 contribution to score. That is every residue with at least one
52 atom within *lddt_pli_radius* + max(*lddt_pli_thresholds*) of
54 * bs_mdl_res: Same for model
56 :param model: Passed to parent constructor - see :class:`LigandScorer`.
57 :type model: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
58 :param target: Passed to parent constructor - see :class:`LigandScorer`.
59 :type target: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
60 :param model_ligands: Passed to parent constructor - see
61 :class:`LigandScorer`.
62 :type model_ligands: :class:`list`
63 :param target_ligands: Passed to parent constructor - see
64 :class:`LigandScorer`.
65 :type target_ligands: :class:`list`
66 :param resnum_alignments: Passed to parent constructor - see
67 :class:`LigandScorer`.
68 :type resnum_alignments: :class:`bool`
69 :param rename_ligand_chain: Passed to parent constructor - see
70 :class:`LigandScorer`.
71 :type rename_ligand_chain: :class:`bool`
72 :param substructure_match: Passed to parent constructor - see
73 :class:`LigandScorer`.
74 :type substructure_match: :class:`bool`
75 :param coverage_delta: Passed to parent constructor - see
76 :class:`LigandScorer`.
77 :type coverage_delta: :class:`float`
78 :param max_symmetries: Passed to parent constructor - see
79 :class:`LigandScorer`.
80 :type max_symmetries: :class:`int`
81 :param lddt_pli_radius: lDDT inclusion radius for lDDT-PLI.
82 :type lddt_pli_radius: :class:`float`
83 :param add_mdl_contacts: Whether to penalize added model contacts.
84 :type add_mdl_contacts: :class:`bool`
85 :param lddt_pli_thresholds: Distance difference thresholds for lDDT.
86 :type lddt_pli_thresholds: :class:`list` of :class:`float`
87 :param lddt_pli_binding_site_radius: Pro param - dont use. Providing a value
88 Restores behaviour from previous
89 implementation that first extracted a
90 binding site with strict distance
91 threshold and computed lDDT-PLI only on
92 those target residues whereas the
93 current implementation includes every
94 atom within *lddt_pli_radius*.
95 :type lddt_pli_binding_site_radius: :class:`float`
98 def __init__(self, model, target, model_ligands=None, target_ligands=None,
99 resnum_alignments=False, rename_ligand_chain=False,
100 substructure_match=False, coverage_delta=0.2,
101 max_symmetries=1e4, lddt_pli_radius=6.0,
102 add_mdl_contacts=True,
103 lddt_pli_thresholds = [0.5, 1.0, 2.0, 4.0],
104 lddt_pli_binding_site_radius=None):
106 super().
__init__(model, target, model_ligands = model_ligands,
107 target_ligands = target_ligands,
108 resnum_alignments = resnum_alignments,
109 rename_ligand_chain = rename_ligand_chain,
110 substructure_match = substructure_match,
111 coverage_delta = coverage_delta,
112 max_symmetries = max_symmetries)
130 "There were no lDDT contacts between the "
131 "binding site and the ligand, and lDDT-PLI "
134 "Unknown error occured in LDDTPLIScorer")
136 def _compute(self, symmetries, target_ligand, model_ligand):
137 """ Implements interface from parent
140 LogInfo(
"Computing lDDT-PLI with added model contacts")
145 LogInfo(
"Computing lDDT-PLI without added model contacts")
151 score = result[
"lddt_pli"]
153 if score
is None or np.isnan(score):
154 if result[
"lddt_pli_n_contacts"] == 0:
162 target_ligand_state = 0
163 model_ligand_state = 0
165 return (score, pair_state, target_ligand_state, model_ligand_state,
168 def _score_dir(self):
169 """ Implements interface from parent
173 def _compute_lddt_pli_add_mdl_contacts(self, symmetries, target_ligand,
180 trg_residues, trg_bs, trg_chains, trg_ligand_chain, \
181 trg_ligand_res, scorer, chem_groups = \
184 trg_bs_center = trg_bs.geometric_center
190 ref_indices = [a.copy()
for a
in scorer.ref_indices_ic]
191 ref_distances = [a.copy()
for a
in scorer.ref_distances_ic]
195 ligand_start_idx = scorer.chain_start_indices[-1]
196 for at_idx
in range(ligand_start_idx):
197 mask = ref_indices[at_idx] >= ligand_start_idx
198 ref_indices[at_idx] = ref_indices[at_idx][mask]
199 ref_distances[at_idx] = ref_distances[at_idx][mask]
201 mdl_residues, mdl_bs, mdl_chains, mdl_ligand_chain, mdl_ligand_res, \
220 chain_mappings = list(chain_mapping._ChainMappings(chem_groups,
225 ligand_atom_mappings = [set()
for a
in mdl_ligand_res.atoms]
226 for (trg_sym, mdl_sym)
in symmetries:
227 for trg_i, mdl_i
in zip(trg_sym, mdl_sym):
228 ligand_atom_mappings[mdl_i].add(trg_i)
230 mdl_ligand_pos = np.zeros((mdl_ligand_res.GetAtomCount(), 3))
231 for a_idx, a
in enumerate(mdl_ligand_res.atoms):
233 mdl_ligand_pos[a_idx, 0] = p[0]
234 mdl_ligand_pos[a_idx, 1] = p[1]
235 mdl_ligand_pos[a_idx, 2] = p[2]
237 trg_ligand_pos = np.zeros((trg_ligand_res.GetAtomCount(), 3))
238 for a_idx, a
in enumerate(trg_ligand_res.atoms):
240 trg_ligand_pos[a_idx, 0] = p[0]
241 trg_ligand_pos[a_idx, 1] = p[1]
242 trg_ligand_pos[a_idx, 2] = p[2]
244 mdl_lig_hashes = [a.hash_code
for a
in mdl_ligand_res.atoms]
246 symmetric_atoms = np.asarray(sorted(list(scorer.symmetric_atoms)),
268 scoring_cache = list()
269 penalty_cache = list()
271 for mapping
in chain_mappings:
274 flat_mapping = dict()
275 for trg_chem_group, mdl_chem_group
in zip(chem_groups, mapping):
276 for a,b
in zip(trg_chem_group, mdl_chem_group):
277 if a
is not None and b
is not None:
282 bs_atom_mapping = dict()
283 for mdl_cname, ref_cname
in flat_mapping.items():
284 aln = cut_ref_mdl_alns[(ref_cname, mdl_cname)]
285 ref_ch = trg_bs.Select(f
"cname={mol.QueryQuoteName(ref_cname)}")
286 mdl_ch = mdl_bs.Select(f
"cname={mol.QueryQuoteName(mdl_cname)}")
287 aln.AttachView(0, ref_ch)
288 aln.AttachView(1, mdl_ch)
290 ref_r = col.GetResidue(0)
291 mdl_r = col.GetResidue(1)
292 if ref_r.IsValid()
and mdl_r.IsValid():
293 for mdl_a
in mdl_r.atoms:
294 ref_a = ref_r.FindAtom(mdl_a.GetName())
296 ref_h = ref_a.handle.hash_code
297 if ref_h
in scorer.atom_indices:
298 mdl_h = mdl_a.handle.hash_code
299 bs_atom_mapping[mdl_h] = \
300 scorer.atom_indices[ref_h]
305 for mdl_a_idx, mdl_a
in enumerate(mdl_ligand_res.atoms):
307 trg_bs_indices = list()
308 close_a = mdl_bs.FindWithin(mdl_a.GetPos(),
311 mdl_a_hash_code = a.hash_code
312 if mdl_a_hash_code
in bs_atom_mapping:
313 trg_bs_indices.append(bs_atom_mapping[mdl_a_hash_code])
314 elif mdl_a_hash_code
not in mdl_lig_hashes:
315 if a.GetChain().GetName()
in flat_mapping:
317 at_key = (a.GetResidue().GetNumber(), a.name)
318 cname = a.GetChain().name
319 cname_key = (flat_mapping[cname], cname)
328 n_penalties.append(n_penalty)
330 trg_bs_indices = np.asarray(sorted(trg_bs_indices))
332 for trg_a_idx
in ligand_atom_mappings[mdl_a_idx]:
336 mask = np.isin(trg_bs_indices,
337 ref_indices[ligand_start_idx + trg_a_idx],
338 assume_unique=
True, invert=
True)
339 added_indices = np.asarray([], dtype=np.int64)
340 added_distances = np.asarray([], dtype=np.float64)
343 added_indices = trg_bs_indices[mask]
344 tmp = scorer.positions.take(added_indices, axis=0)
345 np.subtract(tmp, trg_ligand_pos[trg_a_idx][
None, :],
347 np.square(tmp, out=tmp)
348 tmp = tmp.sum(axis=1)
349 np.sqrt(tmp, out=tmp)
350 added_distances = tmp
353 sym_mask = np.isin(added_indices, symmetric_atoms,
356 cache[(mdl_a_idx, trg_a_idx)] = (added_indices,
358 added_indices[sym_mask],
359 added_distances[sym_mask])
361 scoring_cache.append(cache)
362 penalty_cache.append(n_penalties)
370 non_mapped_cache = dict()
377 best_result = {
"lddt_pli":
None,
378 "lddt_pli_n_contacts": 0}
381 ligand_aln = seq.CreateAlignment()
382 trg_s = seq.CreateSequence(trg_ligand_chain.name,
383 trg_ligand_res.GetOneLetterCode())
384 mdl_s = seq.CreateSequence(mdl_ligand_chain.name,
385 mdl_ligand_res.GetOneLetterCode())
386 ligand_aln.AddSequence(trg_s)
387 ligand_aln.AddSequence(mdl_s)
388 ligand_at_indices = list(range(ligand_start_idx, scorer.n_atoms))
390 sym_idx_collector = [
None] * scorer.n_atoms
391 sym_dist_collector = [
None] * scorer.n_atoms
393 for mapping, s_cache, p_cache
in zip(chain_mappings, scoring_cache,
396 lddt_chain_mapping = dict()
398 for ref_chem_group, mdl_chem_group
in zip(chem_groups, mapping):
399 for ref_ch, mdl_ch
in zip(ref_chem_group, mdl_chem_group):
401 if mdl_ch
is not None:
402 lddt_chain_mapping[mdl_ch] = ref_ch
403 lddt_alns[mdl_ch] = cut_ref_mdl_alns[(ref_ch, mdl_ch)]
406 lddt_chain_mapping[mdl_ligand_chain.name] = trg_ligand_chain.name
407 lddt_alns[mdl_ligand_chain.name] = ligand_aln
411 pos, _, _, _, _, _, lddt_symmetries = \
412 scorer._ProcessModel(mdl_bs, lddt_chain_mapping,
413 residue_mapping = lddt_alns,
415 check_resnames =
False)
425 unmapped_chains = list()
426 already_mapped = set()
427 for mdl_ch
in mdl_chains:
428 if mdl_ch
not in lddt_chain_mapping:
435 if chem_grp_idx
is None:
436 raise RuntimeError(
"This should never happen... "
440 for trg_ch
in self.
_chain_mapper_chain_mapper.chem_groups[chem_grp_idx]:
441 if trg_ch
not in lddt_chain_mapping.values():
442 if trg_ch
not in already_mapped:
443 ch = self.
_chain_mapper_chain_mapper.target.FindChain(trg_ch)
444 c = ch.geometric_center
446 if closest_dist
is None or d < closest_dist:
449 if closest_ch
is not None:
450 unmapped_chains.append((closest_ch, mdl_ch))
451 already_mapped.add(closest_ch)
453 for (trg_sym, mdl_sym)
in symmetries:
456 for mdl_i, trg_i
in zip(mdl_sym, trg_sym):
457 pos[ligand_start_idx + trg_i, :] = mdl_ligand_pos[mdl_i, :]
460 funky_ref_indices = [np.copy(a)
for a
in ref_indices]
461 funky_ref_distances = [np.copy(a)
for a
in ref_distances]
468 for idx
in symmetric_atoms:
469 sym_idx_collector[idx] = list()
470 sym_dist_collector[idx] = list()
474 for mdl_i, trg_i
in zip(mdl_sym, trg_sym):
475 added_penalty += p_cache[mdl_i]
476 cache = s_cache[mdl_i, trg_i]
477 full_trg_i = ligand_start_idx + trg_i
478 funky_ref_indices[full_trg_i] = \
479 np.append(funky_ref_indices[full_trg_i], cache[0])
480 funky_ref_distances[full_trg_i] = \
481 np.append(funky_ref_distances[full_trg_i], cache[1])
482 for idx, d
in zip(cache[2], cache[3]):
483 sym_idx_collector[idx].append(full_trg_i)
484 sym_dist_collector[idx].append(d)
486 for idx
in symmetric_atoms:
487 funky_ref_indices[idx] = \
488 np.append(funky_ref_indices[idx],
489 np.asarray(sym_idx_collector[idx],
491 funky_ref_distances[idx] = \
492 np.append(funky_ref_distances[idx],
493 np.asarray(sym_dist_collector[idx],
505 N = sum([len(funky_ref_indices[i])
for i
in ligand_at_indices])
509 if len(unmapped_chains) > 0:
516 conserved = np.sum(scorer._EvalAtoms(pos, ligand_at_indices,
519 funky_ref_distances),
523 score = np.mean(conserved/N)
525 if score
is not None and score > best_score:
527 best_result = {
"lddt_pli": score,
528 "lddt_pli_n_contacts": N}
531 best_result[
"target_ligand"] = target_ligand
532 best_result[
"model_ligand"] = model_ligand
533 best_result[
"bs_ref_res"] = trg_residues
534 best_result[
"bs_mdl_res"] = mdl_residues
539 def _compute_lddt_pli_classic(self, symmetries, target_ligand,
550 trg_residues, trg_bs, trg_chains, trg_ligand_chain, \
551 trg_ligand_res, scorer, chem_groups = \
558 ref_indices = [a.copy()
for a
in scorer.ref_indices_ic]
559 ref_distances = [a.copy()
for a
in scorer.ref_distances_ic]
563 ligand_start_idx = scorer.chain_start_indices[-1]
564 ligand_at_indices = list(range(ligand_start_idx, scorer.n_atoms))
565 n_exp = sum([len(ref_indices[i])
for i
in ligand_at_indices])
567 mdl_residues, mdl_bs, mdl_chains, mdl_ligand_chain, mdl_ligand_res, \
572 return {
"lddt_pli":
None,
573 "lddt_pli_n_contacts": 0,
574 "target_ligand": target_ligand,
575 "model_ligand": model_ligand,
576 "bs_ref_res": trg_residues,
577 "bs_mdl_res": mdl_residues}
581 for at_idx
in range(ligand_start_idx):
582 mask = ref_indices[at_idx] >= ligand_start_idx
583 ref_indices[at_idx] = ref_indices[at_idx][mask]
584 ref_distances[at_idx] = ref_distances[at_idx][mask]
604 l_aln = seq.CreateAlignment()
605 l_aln.AddSequence(seq.CreateSequence(trg_ligand_chain.name,
606 trg_ligand_res.GetOneLetterCode()))
607 l_aln.AddSequence(seq.CreateSequence(mdl_ligand_chain.name,
608 mdl_ligand_res.GetOneLetterCode()))
610 mdl_ligand_pos = np.zeros((model_ligand.GetAtomCount(), 3))
611 for a_idx, a
in enumerate(model_ligand.atoms):
613 mdl_ligand_pos[a_idx, 0] = p[0]
614 mdl_ligand_pos[a_idx, 1] = p[1]
615 mdl_ligand_pos[a_idx, 2] = p[2]
617 for mapping
in chain_mapping._ChainMappings(chem_groups, chem_mapping):
619 lddt_chain_mapping = dict()
621 for ref_chem_group, mdl_chem_group
in zip(chem_groups, mapping):
622 for ref_ch, mdl_ch
in zip(ref_chem_group, mdl_chem_group):
624 if mdl_ch
is not None:
625 lddt_chain_mapping[mdl_ch] = ref_ch
626 lddt_alns[mdl_ch] = cut_ref_mdl_alns[(ref_ch, mdl_ch)]
629 lddt_chain_mapping[mdl_ligand_chain.name] = trg_ligand_chain.name
630 lddt_alns[mdl_ligand_chain.name] = l_aln
634 pos, _, _, _, _, _, lddt_symmetries = \
635 scorer._ProcessModel(mdl_bs, lddt_chain_mapping,
636 residue_mapping = lddt_alns,
638 check_resnames =
False)
640 for (trg_sym, mdl_sym)
in symmetries:
641 for mdl_i, trg_i
in zip(mdl_sym, trg_sym):
642 pos[ligand_start_idx + trg_i, :] = mdl_ligand_pos[mdl_i, :]
652 conserved = np.sum(scorer._EvalAtoms(pos, ligand_at_indices,
655 ref_distances), axis=0)
656 score = np.mean(conserved/n_exp)
658 if score > best_score:
662 best_result = {
"lddt_pli": best_score,
663 "lddt_pli_n_contacts": n_exp,
664 "target_ligand": target_ligand,
665 "model_ligand": model_ligand,
666 "bs_ref_res": trg_residues,
667 "bs_mdl_res": mdl_residues}
671 def _lddt_pli_unmapped_chain_penalty(self, unmapped_chains,
678 for ch_tuple
in unmapped_chains:
679 if ch_tuple
not in non_mapped_cache:
685 mdl_cname = ch_tuple[1]
686 query =
"cname=" + mol.QueryQuoteName(mdl_cname)
687 mdl_bs_ch = mdl_bs.Select(query)
688 for a
in mdl_ligand_res.atoms:
692 for close_a
in close_atoms:
693 at_key = (close_a.GetResidue().GetNumber(),
697 counts[a.hash_code] = N
700 non_mapped_cache[ch_tuple] = counts
704 counts = non_mapped_cache[ch_tuple]
705 lig_hash_codes = [a.hash_code
for a
in mdl_ligand_res.atoms]
707 n_exp += counts[lig_hash_codes[i]]
712 def _lddt_pli_get_mdl_data(self, model_ligand):
718 for at
in model_ligand.atoms:
719 close_atoms = mdl.FindWithin(at.GetPos(), self.
lddt_pli_radiuslddt_pli_radius)
720 for close_at
in close_atoms:
721 mdl_residues.add(close_at.GetResidue())
724 for r
in mdl.residues:
725 r.SetIntProp(
"bs", 0)
726 for at
in model_ligand.atoms:
727 close_atoms = mdl.FindWithin(at.GetPos(), max_r)
728 for close_at
in close_atoms:
729 close_at.GetResidue().SetIntProp(
"bs", 1)
731 mdl_bs = mol.CreateEntityFromView(mdl.Select(
"grbs:0=1"),
True)
732 mdl_chains = set([ch.name
for ch
in mdl_bs.chains])
734 mdl_editor = mdl_bs.EditXCS(mol.BUFFERED_EDIT)
735 mdl_ligand_chain =
None
736 for cname
in [
"hugo_the_cat_terminator",
"ida_the_cheese_monster"]:
739 mdl_ligand_chain = mdl_editor.InsertChain(cname)
743 if mdl_ligand_chain
is None:
744 raise RuntimeError(
"Fuck this, I'm out...")
745 mdl_ligand_res = mdl_editor.AppendResidue(mdl_ligand_chain,
748 mdl_editor.RenameResidue(mdl_ligand_res,
"LIG")
749 mdl_editor.SetResidueNumber(mdl_ligand_res,
mol.ResNum(1))
751 chem_mapping = list()
753 chem_mapping.append([x
for x
in m
if x
in mdl_chains])
765 def _lddt_pli_get_trg_data(self, target_ligand, max_r = None):
774 for at
in target_ligand.atoms:
775 close_atoms = trg.FindWithin(at.GetPos(), max_r)
776 for close_at
in close_atoms:
777 trg_residues.add(close_at.GetResidue())
779 for r
in trg.residues:
780 r.SetIntProp(
"bs", 0)
782 for r
in trg_residues:
783 r.SetIntProp(
"bs", 1)
785 trg_bs = mol.CreateEntityFromView(trg.Select(
"grbs:0=1"),
True)
786 trg_chains = set([ch.name
for ch
in trg_bs.chains])
788 trg_editor = trg_bs.EditXCS(mol.BUFFERED_EDIT)
789 trg_ligand_chain =
None
790 for cname
in [
"hugo_the_cat_terminator",
"ida_the_cheese_monster"]:
793 trg_ligand_chain = trg_editor.InsertChain(cname)
797 if trg_ligand_chain
is None:
798 raise RuntimeError(
"Fuck this, I'm out...")
800 trg_ligand_res = trg_editor.AppendResidue(trg_ligand_chain,
803 trg_editor.RenameResidue(trg_ligand_res,
"LIG")
804 trg_editor.SetResidueNumber(trg_ligand_res,
mol.ResNum(1))
806 compound_name = trg_ligand_res.name
807 compound = lddt.CustomCompound.FromResidue(trg_ligand_res)
808 custom_compounds = {compound_name: compound}
811 custom_compounds = custom_compounds,
816 chem_groups.append([x
for x
in g
if x
in trg_chains])
829 def _lddt_pli_cut_ref_mdl_alns(self, chem_groups, chem_mapping, mdl_bs,
831 cut_ref_mdl_alns = dict()
832 for ref_chem_group, mdl_chem_group
in zip(chem_groups, chem_mapping):
833 for ref_ch
in ref_chem_group:
835 ref_bs_chain = ref_bs.FindChain(ref_ch)
836 query =
"cname=" + mol.QueryQuoteName(ref_ch)
837 ref_view = self.
_chain_mapper_chain_mapper.target.Select(query)
839 for mdl_ch
in mdl_chem_group:
842 aln.AttachView(0, ref_view)
844 mdl_bs_chain = mdl_bs.FindChain(mdl_ch)
845 query =
"cname=" + mol.QueryQuoteName(mdl_ch)
848 cut_mdl_seq = [
'-'] * aln.GetLength()
849 cut_ref_seq = [
'-'] * aln.GetLength()
850 for i, col
in enumerate(aln):
853 r = col.GetResidue(0)
855 bs_r = ref_bs_chain.FindResidue(r.GetNumber())
857 cut_ref_seq[i] = col[0]
860 r = col.GetResidue(1)
862 bs_r = mdl_bs_chain.FindResidue(r.GetNumber())
864 cut_mdl_seq[i] = col[1]
866 cut_ref_seq =
''.join(cut_ref_seq)
867 cut_mdl_seq =
''.join(cut_mdl_seq)
868 cut_aln = seq.CreateAlignment()
869 cut_aln.AddSequence(seq.CreateSequence(ref_ch, cut_ref_seq))
870 cut_aln.AddSequence(seq.CreateSequence(mdl_ch, cut_mdl_seq))
871 cut_ref_mdl_alns[(ref_ch, mdl_ch)] = cut_aln
872 return cut_ref_mdl_alns
875 def _mappable_atoms(self):
876 """ Stores mappable atoms given a chain mapping
878 Store for each ref_ch,mdl_ch pair all mdl atoms that can be
879 mapped. Don't store mappable atoms as hashes but rather as tuple
880 (mdl_r.GetNumber(), mdl_a.GetName()). Reason for that is that one might
881 operate on Copied EntityHandle objects without corresponding hashes.
882 Given a tuple defining c_pair: (ref_cname, mdl_cname), one
883 can check if a certain atom is mappable by evaluating:
884 if (mdl_r.GetNumber(), mdl_a.GetName()) in self._mappable_atoms(c_pair)
888 for (ref_cname, mdl_cname), aln
in self.
_ref_mdl_alns_ref_mdl_alns.items():
890 ref_query = f
"cname={mol.QueryQuoteName(ref_cname)}"
891 mdl_query = f
"cname={mol.QueryQuoteName(mdl_cname)}"
892 ref_ch = self.
_chain_mapper_chain_mapper.target.Select(ref_query)
894 aln.AttachView(0, ref_ch)
895 aln.AttachView(1, mdl_ch)
897 ref_r = col.GetResidue(0)
898 mdl_r = col.GetResidue(1)
899 if ref_r.IsValid()
and mdl_r.IsValid():
900 for mdl_a
in mdl_r.atoms:
901 if ref_r.FindAtom(mdl_a.name).IsValid():
902 c_key = (ref_cname, mdl_cname)
903 at_key = (mdl_r.GetNumber(), mdl_a.name)
909 def _chem_mapping(self):
917 def _chem_group_alns(self):
925 def _ref_mdl_alns(self):
928 chain_mapping._GetRefMdlAlns(self.
_chain_mapper_chain_mapper.chem_groups,
935 def _chain_mapping_mdl(self):
937 with ligand_scoring_base._SinkVerbosityLevel():
944 __all__ = (
'LDDTPLIScorer',)
def __init__(self, model, target, model_ligands=None, target_ligands=None, resnum_alignments=False, rename_ligand_chain=False, substructure_match=False, coverage_delta=0.2, max_symmetries=1e4, lddt_pli_radius=6.0, add_mdl_contacts=True, lddt_pli_thresholds=[0.5, 1.0, 2.0, 4.0], lddt_pli_binding_site_radius=None)
lddt_pli_binding_site_radius
def _lddt_pli_get_trg_data(self, target_ligand, max_r=None)
def _mappable_atoms(self)
def _chem_group_alns(self)
def _compute_lddt_pli_classic(self, symmetries, target_ligand, model_ligand)
def _lddt_pli_unmapped_chain_penalty(self, unmapped_chains, non_mapped_cache, mdl_bs, mdl_ligand_res, mdl_sym)
def _lddt_pli_cut_ref_mdl_alns(self, chem_groups, chem_mapping, mdl_bs, ref_bs)
def _lddt_pli_get_mdl_data(self, model_ligand)
def _chain_mapping_mdl(self)
def _compute_lddt_pli_add_mdl_contacts(self, symmetries, target_ligand, model_ligand)
Real DLLEXPORT_OST_GEOM Distance(const Line2 &l, const Vec2 &v)