3 from scipy.spatial
import distance
9 """ Helper object for QS-score computation
11 Holds structural information and getters for interacting chains, i.e.
12 interfaces. Peptide residues are represented by their CB position
13 (CA for GLY) and nucleotides by C3'.
15 :param ent: Structure for QS score computation
16 :type ent: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
17 :param contact_d: Pairwise distance of residues to be considered as contacts
18 :type contact_d: :class:`float`
21 pep_query =
"(peptide=true and (aname=\"CB\" or (rname=\"GLY\" and aname=\"CA\")))"
22 nuc_query =
"(nucleotide=True and aname=\"C3'\")"
23 self.
_view_view = ent.Select(
" or ".join([pep_query, nuc_query]))
30 self.
_pos_pos = dict()
39 """ Processed structure
41 View that only contains representative atoms. That's CB for peptide
42 residues (CA for GLY) and C3' for nucleotides.
44 :type: :class:`ost.mol.EntityView`
46 return self.
_view_view
50 """ Pairwise distance of residues to be considered as contacts
52 Given at :class:`QSEntity` construction
60 """ Chain names in :attr:`~view`
64 :type: :class:`list` of :class:`str`
67 self.
_chain_names_chain_names = sorted([ch.name
for ch
in self.
viewview.chains])
72 """ Pairs of chains in :attr:`~view` with at least one contact
74 :type: :class:`list` of :class:`tuples`
78 for x
in itertools.combinations(self.
chain_nameschain_names, 2):
87 :param chain_name: Chain in :attr:`~view`
88 :type chain_name: :class:`str`
90 chain = self.
viewview.FindChain(chain_name)
91 if not chain.IsValid():
92 raise RuntimeError(f
"view has no chain named \"{chain_name}\"")
96 """ Get sequence of chain
98 Returns sequence of specified chain as raw :class:`str`
100 :param chain_name: Chain in :attr:`~view`
101 :type chain_name: :class:`str`
103 if chain_name
not in self.
_sequence_sequence:
104 ch = self.
GetChainGetChain(chain_name)
105 s =
''.join([r.one_letter_code
for r
in ch.residues])
107 return self.
_sequence_sequence[chain_name]
110 """ Get representative positions of chain
112 That's CB positions for peptide residues (CA for GLY) and C3' for
113 nucleotides. Returns positions as a numpy array of shape
116 :param chain_name: Chain in :attr:`~view`
117 :type chain_name: :class:`str`
119 if chain_name
not in self.
_pos_pos:
120 ch = self.
GetChainGetChain(chain_name)
121 pos = np.zeros((len(ch.residues), 3))
122 for i, r
in enumerate(ch.residues):
123 pos[i,:] = r.atoms[0].
GetPos().data
124 self.
_pos_pos[chain_name] = pos
125 return self.
_pos_pos[chain_name]
127 def PairDist(self, chain_name_one, chain_name_two):
128 """ Get pairwise distances between two chains
130 Returns distances as numpy array of shape (a, b).
131 Where a is the number of residues of the chain that comes BEFORE the
132 other in :attr:`~chain_names`
134 key = (min(chain_name_one, chain_name_two),
135 max(chain_name_one, chain_name_two))
138 self.
GetPosGetPos(key[1]),
143 """ Get min x,y,z cooridnates for given chain
145 Based on positions that are extracted with GetPos
147 :param chain_name: Chain in :attr:`~view`
148 :type chain_name: :class:`str`
150 if chain_name
not in self.
_min_pos_min_pos:
151 self.
_min_pos_min_pos[chain_name] = self.
GetPosGetPos(chain_name).min(0)
152 return self.
_min_pos_min_pos[chain_name]
155 """ Get max x,y,z cooridnates for given chain
157 Based on positions that are extracted with GetPos
159 :param chain_name: Chain in :attr:`~view`
160 :type chain_name: :class:`str`
162 if chain_name
not in self.
_max_pos_max_pos:
163 self.
_max_pos_max_pos[chain_name] = self.
GetPosGetPos(chain_name).max(0)
164 return self.
_max_pos_max_pos[chain_name]
167 """ Returns True if chains potentially interact
169 Based on crude collision detection. There is no guarantee
170 that they actually interact if True is returned. However,
171 if False is returned, they don't interact for sure.
173 :param chain_name_one: Chain in :attr:`~view`
174 :type chain_name_one: class:`str`
175 :param chain_name_two: Chain in :attr:`~view`
176 :type chain_name_two: class:`str`
178 min_one = self.
GetMinPosGetMinPos(chain_name_one)
179 max_one = self.
GetMaxPosGetMaxPos(chain_name_one)
180 min_two = self.
GetMinPosGetMinPos(chain_name_two)
181 max_two = self.
GetMaxPosGetMaxPos(chain_name_two)
182 if np.max(min_one - max_two) > self.
contact_dcontact_d:
184 if np.max(min_two - max_one) > self.
contact_dcontact_d:
190 Holds data relevant for QS-score computation. Formulas for QS scores:
194 - QS_best = weighted_scores / (weight_sum + weight_extra_mapped)
195 - QS_global = weighted_scores / (weight_sum + weight_extra_all)
196 -> weighted_scores = sum(w(min(d1,d2)) * (1 - abs(d1-d2)/12)) for shared
197 -> weight_sum = sum(w(min(d1,d2))) for shared
198 -> weight_extra_mapped = sum(w(d)) for all mapped but non-shared
199 -> weight_extra_all = sum(w(d)) for all non-shared
200 -> w(d) = 1 if d <= 5, exp(-2 * ((d-5.0)/4.28)^2) else
202 In the formulas above:
204 * "d": CA/CB-CA/CB distance of an "inter-chain contact" ("d1", "d2" for
206 * "mapped": we could map chains of two structures and align residues in
208 * "shared": pairs of residues which are "mapped" and have
209 "inter-chain contact" in both structures.
210 * "inter-chain contact": CB-CB pairs (CA for GLY) with distance <= 12 A
211 (fallback to CA-CA if :attr:`calpha_only` is True).
212 * "w(d)": weighting function (prob. of 2 res. to interact given CB distance)
213 from `Xu et al. 2009 <https://dx.doi.org/10.1016%2Fj.jmb.2008.06.002>`_.
215 def __init__(self, weighted_scores, weight_sum, weight_extra_mapped,
216 weight_extra_all, complete_mapping):
225 """ weighted_scores attribute as described in formula section above
227 :type: :class:`float`
233 """ weight_sum attribute as described in formula section above
235 :type: :class:`float`
241 """ weight_extra_mapped attribute as described in formula section above
243 :type: :class:`float`
249 """ weight_extra_all attribute as described in formula section above
251 :type: :class:`float`
257 """ Whether the underlying mapping of the scored assemblies is complete
259 In other words: If they have the same stoichiometry. This is relevant
260 for :attr:`~QS_best` and :attr:`~QS_global` in case of no contacts in
261 any of the scored entities.
269 """ QS_best - the actual score as described in formula section above
271 If there are no contacts observed in any of the scored entities this
272 score is 1.0 if we're comparing structures with
273 :attr:`~complete_mapping`, 0.0 otherwise. In the example of two
274 monomers, no contacts can be observed but they exactly match in terms
275 of quaternary structure. Thus a perfect score. In terms of higher order
276 structure that becomes a bit more abstract but in principle they still
277 have the exact same quaternary structure if they match in stoichiometry
278 but have no single contact.
280 :type: :class:`float`
284 if denominator != 0.0:
285 return nominator/denominator
293 """ QS_global - the actual score as described in formula section above
295 If there are no contacts observed in any of the scored entities this
296 score is 1.0 if we're comparing structures with
297 :attr:`~complete_mapping`, 0.0 otherwise. In the example of two
298 monomers, no contacts can be observed but they exactly match in terms
299 of quaternary structure. Thus a perfect score. In terms of higher order
300 structure that becomes a bit more abstract but in principle they still
301 have the exact same quaternary structure if they match in stoichiometry
302 but have no single contact.
304 :type: :class:`float`
308 if denominator != 0.0:
309 return nominator/denominator
317 """ Helper object to compute QS-score
319 Tightly integrated into the mechanisms from the chain_mapping module.
320 The prefered way to derive an object of type :class:`QSScorer` is through
321 the static constructor: :func:`~FromMappingResult`. Example score
322 computation including mapping:
326 from ost.mol.alg.qsscore import QSScorer
327 from ost.mol.alg.chain_mapping import ChainMapper
329 ent_1 = io.LoadPDB("path_to_assembly_1.pdb")
330 ent_2 = io.LoadPDB("path_to_assembly_2.pdb")
332 chain_mapper = ChainMapper(ent_1)
333 mapping_result = chain_mapper.GetlDDTMapping(ent_2)
334 qs_scorer = QSScorer.FromMappingResult(mapping_result)
335 score_result = qs_scorer.Score(mapping_result.mapping)
336 print("score:", score_result.QS_global)
338 QS-score computation in :func:`QSScorer.Score` implements caching.
339 Repeated computations with alternative chain mappings thus become faster.
341 :param target: Structure designated as "target". Can be fetched from
342 :class:`ost.mol.alg.chain_mapping.MappingResult`
343 :type target: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
344 :param chem_groups: Groups of chemically equivalent chains in *target*.
346 :class:`ost.mol.alg.chain_mapping.MappingResult`
347 :type chem_groups: :class:`list` of :class:`list` of :class:`str`
348 :param model: Structure designated as "model". Can be fetched from
349 :class:`ost.mol.alg.chain_mapping.MappingResult`
350 :type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
351 :param alns: Each alignment is accessible with ``alns[(t_chain,m_chain)]``.
352 First sequence is the sequence of the respective chain in
353 :attr:`~qsent1`, second sequence the one from :attr:`~qsent2`.
355 :class:`ost.mol.alg.chain_mapping.MappingResult`
356 :type alns: :class:`dict` with key: :class:`tuple` of :class:`str`, value:
357 :class:`ost.seq.AlignmentHandle`
359 def __init__(self, target, chem_groups, model, alns, contact_d = 12.0):
364 chem_group_ch_names = list(itertools.chain.from_iterable(chem_groups))
365 if self.
_qsent1_qsent1.chain_names != sorted(chem_group_ch_names):
366 raise RuntimeError(f
"Expect exact same chain names in chem_groups "
367 f
"and in target (which is processed to only "
368 f
"contain peptides/nucleotides). target: "
369 f
"{self._qsent1.chain_names}, chem_groups: "
370 f
"{chem_group_ch_names}")
374 self.
_alns_alns = alns
396 """ The preferred way to get a :class:`QSScorer`
398 Static constructor that derives an object of type :class:`QSScorer`
399 using a :class:`ost.mol.alg.chain_mapping.MappingResult`
401 :param mapping_result: Data source
402 :type mapping_result: :class:`ost.mol.alg.chain_mapping.MappingResult`
404 qs_scorer =
QSScorer(mapping_result.target, mapping_result.chem_groups,
405 mapping_result.model, alns = mapping_result.alns)
410 """ Represents *target*
412 :type: :class:`QSEntity`
418 """ Groups of chemically equivalent chains in *target*
420 Provided at object construction
422 :type: :class:`list` of :class:`list` of :class:`str`
428 """ Represents *model*
430 :type: :class:`QSEntity`
436 """ Alignments between chains in :attr:`~qsent1` and :attr:`~qsent2`
438 Provided at object construction. Each alignment is accessible with
439 ``alns[(t_chain,m_chain)]``. First sequence is the sequence of the
440 respective chain in :attr:`~qsent1`, second sequence the one from
443 :type: :class:`dict` with key: :class:`tuple` of :class:`str`, value:
444 :class:`ost.seq.AlignmentHandle`
446 return self.
_alns_alns
448 def Score(self, mapping, check=True):
449 """ Computes QS-score given chain mapping
451 Again, the preferred way is to get *mapping* is from an object
452 of type :class:`ost.mol.alg.chain_mapping.MappingResult`.
455 :attr:`ost.mol.alg.chain_mapping.MappingResult.mapping`
456 :type mapping: :class:`list` of :class:`list` of :class:`str`
457 :param check: Perform input checks, can be disabled for speed purposes
458 if you know what you're doing.
459 :type check: :class:`bool`
460 :returns: Result object of type :class:`QSScorerResult`
465 if len(self.
chem_groupschem_groups) != len(mapping):
466 raise RuntimeError(
"Dimensions of self.chem_groups and mapping "
468 for a,b
in zip(self.
chem_groupschem_groups, mapping):
470 raise RuntimeError(
"Dimensions of self.chem_groups and "
471 "mapping must match")
473 for name
in itertools.chain.from_iterable(mapping):
474 if name
is not None and name
not in self.
qsent2qsent2.chain_names:
475 raise RuntimeError(f
"Each chain in mapping must be present "
476 f
"in self.qsent2. No match for "
479 flat_mapping = dict()
480 for a, b
in zip(self.
chem_groupschem_groups, mapping):
481 flat_mapping.update({x: y
for x, y
in zip(a, b)
if y
is not None})
486 """ Computes QS-score only considering one interface
488 This only works for interfaces that are computed in :func:`Score`, i.e.
489 interfaces for which the alignments are set up correctly.
491 As all specified chains must be present, the mapping is considered
492 complete which affects
493 :attr:`QSScorerResult.QS_global`/:attr:`QSScorerResult.QS_best` in
494 edge cases of no observed contacts.
496 :param trg_ch1: Name of first interface chain in target
497 :type trg_ch1: :class:`str`
498 :param trg_ch2: Name of second interface chain in target
499 :type trg_ch2: :class:`str`
500 :param mdl_ch1: Name of first interface chain in model
501 :type mdl_ch1: :class:`str`
502 :param mdl_ch2: Name of second interface chain in model
503 :type mdl_ch2: :class:`str`
504 :returns: Result object of type :class:`QSScorerResult`
505 :raises: :class:`RuntimeError` if no aln for trg_ch1/mdl_ch1 or
506 trg_ch2/mdl_ch2 is available.
508 if (trg_ch1, mdl_ch1)
not in self.
alnsalns:
509 raise RuntimeError(f
"No aln between trg_ch1 ({trg_ch1}) and "
510 f
"mdl_ch1 ({mdl_ch1}) available. Did you "
511 f
"construct the QSScorer object from a "
512 f
"MappingResult and are trg_ch1 and mdl_ch1 "
513 f
"mapped to each other?")
514 if (trg_ch2, mdl_ch2)
not in self.
alnsalns:
515 raise RuntimeError(f
"No aln between trg_ch1 ({trg_ch1}) and "
516 f
"mdl_ch1 ({mdl_ch1}) available. Did you "
517 f
"construct the QSScorer object from a "
518 f
"MappingResult and are trg_ch1 and mdl_ch1 "
519 f
"mapped to each other?")
520 trg_int = (trg_ch1, trg_ch2)
521 mdl_int = (mdl_ch1, mdl_ch2)
529 """ Same as :func:`Score` but with flat mapping
531 :param flat_mapping: Dictionary with target chain names as keys and
532 the mapped model chain names as value
533 :type flat_mapping: :class:`dict` with :class:`str` as key and value
534 :returns: Result object of type :class:`QSScorerResult`
537 weighted_scores = 0.0
539 weight_extra_mapped = 0.0
540 weight_extra_all = 0.0
543 processed_qsent2_interfaces = set()
545 for int1
in self.
qsent1qsent1.interacting_chains:
546 if int1[0]
in flat_mapping
and int1[1]
in flat_mapping:
547 int2 = (flat_mapping[int1[0]], flat_mapping[int1[1]])
551 weight_extra_mapped += c
552 weight_extra_all += d
553 processed_qsent2_interfaces.add((min(int2[0], int2[1]),
554 max(int2[0], int2[1])))
559 r_flat_mapping = {v:k
for k,v
in flat_mapping.items()}
560 for int2
in self.
qsent2qsent2.interacting_chains:
561 if int2
not in processed_qsent2_interfaces:
562 if int2[0]
in r_flat_mapping
and int2[1]
in r_flat_mapping:
563 int1 = (r_flat_mapping[int2[0]], r_flat_mapping[int2[1]])
567 weight_extra_mapped += c
568 weight_extra_all += d
572 trg_chains = sorted(self.
qsent1qsent1.chain_names)
573 mdl_chains = sorted(self.
qsent2qsent2.chain_names)
574 mapped_trg_chains = sorted(flat_mapping.keys())
575 mapped_mdl_chains = sorted(flat_mapping.values())
576 trg_complete = trg_chains == mapped_trg_chains
577 mdl_complete = mdl_chains == mapped_mdl_chains
578 complete_mapping = trg_complete
and mdl_complete
580 return QSScorerResult(weighted_scores, weight_sum, weight_extra_mapped,
581 weight_extra_all, complete_mapping)
583 def _MappedInterfaceScores(self, int1, int2):
584 key_one = (int1, int2)
587 key_two = ((int1[1], int1[0]), (int2[1], int2[0]))
591 weighted_scores, weight_sum, weight_extra_mapped, weight_extra_all = \
593 self.
_mapped_cache_mapped_cache[key_one] = (weighted_scores, weight_sum, weight_extra_mapped,
595 return (weighted_scores, weight_sum, weight_extra_mapped, weight_extra_all)
597 def _InterfaceScores(self, int1, int2):
599 d1 = self.
qsent1qsent1.PairDist(int1[0], int1[1])
600 d2 = self.
qsent2qsent2.PairDist(int2[0], int2[1])
604 if int1[0] > int1[1]:
606 if int2[0] > int2[1]:
610 mapped_indices_1_1, mapped_indices_1_2 = \
613 mapped_indices_2_1, mapped_indices_2_2 = \
619 assert(self.
qsent1qsent1.contact_d == self.
qsent2qsent2.contact_d)
620 contact_d = self.
qsent1qsent1.contact_d
621 mapped_idx_grid_1 = np.ix_(mapped_indices_1_1, mapped_indices_2_1)
622 mapped_idx_grid_2 = np.ix_(mapped_indices_1_2, mapped_indices_2_2)
624 if mapped_indices_1_1.shape[0] == 0
or mapped_indices_2_1.shape[0] == 0:
629 shared_mask_d1 = np.full(d1.shape,
False, dtype=bool)
630 shared_mask_d2 = np.full(d2.shape,
False, dtype=bool)
631 mapped_nonshared_mask_d1 = np.full(d1.shape,
False, dtype=bool)
632 mapped_nonshared_mask_d2 = np.full(d2.shape,
False, dtype=bool)
633 if mapped_indices_1_1.shape[0] == 0
or \
634 mapped_indices_2_1.shape[0] == 0:
637 mapped_d1_contacts = np.full(d1.shape,
False, dtype=bool)
639 mapped_d1_contacts = d1[mapped_idx_grid_1] < contact_d
640 mapped_nonshared_mask_d1[mapped_idx_grid_1] = mapped_d1_contacts
642 if mapped_indices_1_2.shape[0] == 0
or \
643 mapped_indices_2_2.shape[0] == 0:
646 mapped_d2_contacts = np.full(d2.shape,
False, dtype=bool)
648 mapped_d2_contacts = d2[mapped_idx_grid_2] < contact_d
649 mapped_nonshared_mask_d2[mapped_idx_grid_2] = mapped_d2_contacts
650 shared_mask = np.full(mapped_d1_contacts.shape,
False, dtype=bool)
652 mapped_d1_contacts = d1[mapped_idx_grid_1] < contact_d
653 mapped_d2_contacts = d2[mapped_idx_grid_2] < contact_d
654 shared_mask = np.logical_and(mapped_d1_contacts, mapped_d2_contacts)
655 shared_mask_d1 = np.full(d1.shape,
False, dtype=bool)
656 shared_mask_d1[mapped_idx_grid_1] = shared_mask
657 shared_mask_d2 = np.full(d2.shape,
False, dtype=bool)
658 shared_mask_d2[mapped_idx_grid_2] = shared_mask
661 mapped_nonshared_mask_d1 = np.full(d1.shape,
False, dtype=bool)
662 mapped_nonshared_mask_d1[mapped_idx_grid_1] = \
663 np.logical_and(np.logical_not(shared_mask), mapped_d1_contacts)
664 mapped_nonshared_mask_d2 = np.full(d2.shape,
False, dtype=bool)
665 mapped_nonshared_mask_d2[mapped_idx_grid_2] = \
666 np.logical_and(np.logical_not(shared_mask), mapped_d2_contacts)
669 shared_d1 = d1[shared_mask_d1]
670 shared_d2 = d2[shared_mask_d2]
671 shared_min = np.minimum(shared_d1, shared_d2)
672 shared_abs_diff_div_12 = np.abs(np.subtract(shared_d1, shared_d2))/12.0
673 weight_term = np.ones(shared_min.shape[0])
674 bigger_5_mask = shared_min > 5.0
675 weights = np.exp(-2.0*np.square((shared_min[bigger_5_mask]-5.0)/4.28))
676 weight_term[bigger_5_mask] = weights
677 diff_term = np.subtract(np.ones(weight_term.shape[0]),
678 shared_abs_diff_div_12)
679 weighted_scores = np.sum(np.multiply(weight_term, diff_term))
680 weight_sum = np.sum(weight_term)
683 nonshared_contact_mask_d1 = np.logical_and(np.logical_not(shared_mask_d1),
685 contact_distances = d1[nonshared_contact_mask_d1]
686 bigger_5 = contact_distances[contact_distances > 5]
687 weight_extra_all = np.sum(np.exp(-2.0*np.square((bigger_5-5.0)/4.28)))
689 weight_extra_all += contact_distances.shape[0] - bigger_5.shape[0]
691 nonshared_contact_mask_d2 = np.logical_and(np.logical_not(shared_mask_d2),
693 contact_distances = d2[nonshared_contact_mask_d2]
694 bigger_5 = contact_distances[contact_distances > 5]
695 weight_extra_all += np.sum(np.exp(-2.0*np.square((bigger_5-5.0)/4.28)))
697 weight_extra_all += contact_distances.shape[0] - bigger_5.shape[0]
700 contact_distances = d1[mapped_nonshared_mask_d1]
701 bigger_5 = contact_distances[contact_distances > 5]
702 weight_extra_mapped = np.sum(np.exp(-2.0*np.square((bigger_5-5.0)/4.28)))
704 weight_extra_mapped += contact_distances.shape[0] - bigger_5.shape[0]
706 contact_distances = d2[mapped_nonshared_mask_d2]
707 bigger_5 = contact_distances[contact_distances > 5]
708 weight_extra_mapped += np.sum(np.exp(-2.0*np.square((bigger_5-5.0)/4.28)))
710 weight_extra_mapped += contact_distances.shape[0] - bigger_5.shape[0]
712 return (weighted_scores, weight_sum, weight_extra_mapped, weight_extra_all)
714 def _IndexMapping(self, ch1, ch2):
715 """ Fetches aln and returns indices of (non-)aligned residues
717 returns 2 numpy arrays containing the indices of residues in
718 ch1 and ch2 which are aligned
720 mapped_indices_1 = list()
721 mapped_indices_2 = list()
724 for col
in self.
alnsalns[(ch1, ch2)]:
725 if col[0] !=
'-' and col[1] !=
'-':
726 mapped_indices_1.append(idx_1)
727 mapped_indices_2.append(idx_2)
732 return (np.array(mapped_indices_1), np.array(mapped_indices_2))
734 def _InterfacePenalty1(self, interface):
740 def _InterfacePenalty2(self, interface):
746 def _InterfacePenalty(self, qsent, interface):
747 d = qsent.PairDist(interface[0], interface[1])
748 contact_distances = d[d < qsent.contact_d]
749 bigger_5 = contact_distances[contact_distances > 5]
750 penalty = np.sum(np.exp(-2.0*np.square((bigger_5-5.0)/4.28)))
752 penalty += contact_distances.shape[0] - bigger_5.shape[0]
756 __all__ = (
'QSEntity',
'QSScorer',
'QSScorerResult')
def GetMaxPos(self, chain_name)
def GetMinPos(self, chain_name)
def GetPos(self, chain_name)
def interacting_chains(self)
def GetSequence(self, chain_name)
def GetChain(self, chain_name)
def PairDist(self, chain_name_one, chain_name_two)
def __init__(self, ent, contact_d=12.0)
def PotentialInteraction(self, chain_name_one, chain_name_two)
def _InterfacePenalty1(self, interface)
def FromMappingResult(mapping_result)
def _InterfaceScores(self, int1, int2)
def _InterfacePenalty2(self, interface)
def _InterfacePenalty(self, qsent, interface)
def __init__(self, target, chem_groups, model, alns, contact_d=12.0)
def ScoreInterface(self, trg_ch1, trg_ch2, mdl_ch1, mdl_ch2)
def _IndexMapping(self, ch1, ch2)
def Score(self, mapping, check=True)
def _MappedInterfaceScores(self, int1, int2)
def FromFlatMapping(self, flat_mapping)
def weight_extra_mapped(self)
def weight_extra_all(self)
def weighted_scores(self)
def complete_mapping(self)
def __init__(self, weighted_scores, weight_sum, weight_extra_mapped, weight_extra_all, complete_mapping)